Antibacterial Resistance and Bacterial Load in Milk Exposed to Dog Saliva in Sudan
Received 27 Jul, 2024 |
Accepted 24 Sep, 2024 |
Published 31 Dec, 2024 |
Background and Objective: Dogs saliva contains several types of bacteria, some of which are pathogenic to humans. Dogs contribute to many zoonotic diseases that may be transmitted by saliva. Dog bites and dog scratches are common sources of diseases among humans, particularly in children who use to play with dogs. This study aimed to identify and characterize bacteria present in dog saliva, quantify bacterial load in milk contaminated by dog saliva and assess bacterial susceptibility to twelve antibiotics. Materials and Methods: Two experiments were conducted: The first involved 150 swabs of police dog saliva in Bori and the second used 150 milk samples mixed with dog saliva from various areas. Bacteria were cultured on multiple media and tested against several antibiotics, with inhibition zones measured to determine sensitivity, intermediate response, or resistance. Results: Five bacterial species were identified: Staphylococcus spp., Streptococcus spp., Micrococcus spp., Gemella morbillorum and Bacillus spp. Staphylococcus aureus was the predominant species. Co-trimoxazole showed the highest effectiveness, with 81.7% sensitivity, followed by Ciprofloxacin at 73.3%. The bacterial load increased with extended licking, with the highest counts in Gandahar and the lowest in Kafori. Conclusion: This study concludes that Staphylococcus aureus, is predominant in dog saliva, with bacterial load increasing as milk licking recurs. Co-Trimoxazole and Ciprofloxacin are the preferred treatments.
Copyright © 2024 Mohammed Tahir et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
INTRODUCTION
The interaction between humans and dogs is widespread, with dogs serving multiple roles, from pets to service animals. This close relationship poses potential health risks due to the transmission of pathogens via saliva. Previous studies have identified a diverse array of bacterial species in dog saliva. Key studies, such as those by Toth et al.1 and Veir and Lappin2, have documented the presence of Staphylococcus spp., Streptococcus spp., Pasteurella spp. and various Gram-negative bacteria. These studies highlight the potential for pathogenic bacteria to be present in dog saliva, which can pose a risk if transmitted to humans. Research by Johler et al.3 indicated that food items contaminated with dog saliva could harbor high levels of bacteria, leading to food-borne illnesses. This is particularly concerning when considering dairy products, such as milk, which can provide an ideal growth medium for bacteria.
Staphylococcus species, particularly Staphylococcus aureus and Staphylococcus intermedius, have been extensively studied due to their ability to cause a range of infections in humans and animals. Studies by Grudlewska-Buda et al.4 and Cuny et al.5 have shown that these bacteria can be resistant to multiple antibiotics, posing significant challenges in clinical settings. The presence of bacteria in dog saliva and their subsequent transfer to food items has been a topic of research, especially concerning the safety of consuming food contaminated by dog saliva. This study aims to isolate and characterize bacteria from dog saliva, quantify bacterial load in milk contaminated by dog saliva and assess the antibiotic susceptibility of isolated bacteria.
MATERIALS AND METHODS
Study area: Conducted across various locations (Tuti Island, Gandahar, EL-Thawrah, EL-Salha, Kafori, EL-Shuhada and Bori) in Khartoum from November, 2018 to November, 2021.
Study design: A descriptive cross-sectional study was conducted over three years, analyzing samples for bacterial contamination and antibiotic susceptibility.
Microbiological cultures and bacterial isolates
Sample collection: One hundred and fifty swabs from police dogs’ saliva were collected at the police dog center in Bori. One hundred and fifty milk samples were mixed with dog saliva from domestic dogs in areas such as Elthawrah, Tuti Island, Gandahar, Elsalha, Kafori and Elshuhada.
Primary culture: Samples were cultured on blood agar and nutrient agar under aerobic conditions. Visual and microscopic examination for bacterial growth and characteristics6-8.
Bacterial identification and count: Bacteria identified using conventional bacteriological methods and Colony-Forming Unit (CFU) counts9.
Identification by biochemical tests7
For gram-positive bacteria:
• | Catalase test: A culture sample was placed on a slide with a drop of 3% hydrogen peroxide10. The presence of gas bubbles indicated a positive result |
• | Coagulase test: |
• | Slide test: A bacterial suspension in normal saline was mixed with undiluted human plasma11. Clumping within 5-10 sec indicated a positive result | |
• | Tube test: A diluted plasma sample was mixed with a broth culture and incubated at 37°C overnight12. Clot formation indicated a positive result |
• | Voges-Proskauer test: This test differentiates between Staphylococcus aureus and Staphylococcus intermedius. The broth media was inoculated, incubated and then treated with alpha-naphthol and KOH10. The development of a red color indicated a positive result |
• | Staining techniques13 |
Differentiation between bacteria: Novobiocin (5 μg/disk), basitracin (10 International Units) and optochin (5 μg/disk) disks were obtained from Sigma-Aldrich (Merck) and were used to differentiate bacterial species and observe hemolysis in blood agar14. The presence or absence of spores and colony pigmentation were also noted.
Table 1: | Standard zone of inhibition to different antibiotics |
Zone of inhibition (diameter in mm) | ||||
Antibiotic disk | Disk potency | Resistant | Intermediate | Sensitive |
Linezolid (LZ) | 30 mcg | 20 or less | - | 21 or more |
Ciprofloxacin (CIP) | 5 mcg | 15 or less | 16-20 | 21 or more |
Roxithromycin (RF) | 15 mcg | 9 or less | Oct-20 | 21 or more |
Ampicillin (AS) | 10 mcg | 11 or less | Dec-14 | 15 or more |
Cefotaxime (CF) | 30 mcg | 14 or less | 15-22 | 23 or more |
CoTrimexothazol (BA) | 25 mcg | 10 or less | Nov-15 | 16 or more |
Tetracycline (TE) | 30 mcg | 14 or less | 15-18 | 19 or more |
Cephalexin (PR) | 30 mcg | 14 or less | 15-17 | 18 or more |
Cloxacillin (CX) | 5 mcg | 10 or less | 11-Dec | 13 or more |
Gentamicin (GM) | 10 mcg | 12 r less | 13-14 | 15 or more |
Levofloxacin (LE) | 5 mcg | 13 or less | 14-16 | 17 or more |
Lincomycin (LM) | 2 mcg | 14 or less | 15-20 | 21 or more |
Source: Company of Axium Laboratories, Paharganj, New Delhi |
Table 2: | Percentages of gender of dogs from all areas |
Gender | Frequency | Percentage |
Male | 162 | 54 |
Female | 138 | 46 |
Total | 300 | 100 |
Antimicrobial susceptibitity: Antibiotic susceptibility tested against twelve antibiotics, including Ampicillin, Co-Trimoxazole, Cephalexin, Tetracycline, Cefotaxime, Ciprofloxacin, Levofloxacin, Gentamycin, Lincomycin, Linezoled, Roxithromycin and Cloxacillin. Pure cultures from nutrient agar were inoculated into nutrient broth and incubated until light turbidity appeared. The suspension was spread on Mueller-Hinton agar and antibiotic discs were placed on the medium. The plates were incubated at 37°C for 18-24 hrs and the zones of inhibition were measured to determine sensitivity or resistance15. The standard zone of inhibition to different antibiotics was shown in Table 1. The antibiotic disks and their corresponding zones of inhibition were used to classify bacteria as resistant, intermediate or sensitive based on a standard interpretative chart.
RESULTS
In the study samples were collected from male and female dogs of different ages, the males had the highest percentage as shown in Table 2.
One hundred and fifty milk mixed with saliva samples were collected from different areas including Tuti Island, Elshuhada, Elthawrah, Kafori, Gandahar and Elsalha and 150 swab samples were collected from the saliva of police dogs from Bori in Khartoum state shown in Table 3-9.
Staphylococcus aureus had the highest percentage in all areas. In Tuti Island, S. aureus had the highest percentage. In Gandahar, S. aureus and B. lentus were the highest percentages. In Elthawrah and Elsalha, S. aureus and S. intermedius were the highest percentages. In Kafori, S. aureus and B. badius were the highest percentages. In Elshuhada,S. aureus and S. sciuri were the highest percentages. In the Police Dogs Center in Bori, S. aureus and S. intermedius had the highest percentage. Staphylococcus aureus was the highest percentage (Table 3-10).
The count of CFU bacteria due to licking milk three times was carried out for studied bacteria (Table 11). The highest load of bacteria was in samples which were collected from Gandahar (lick one was 7.0×106, lick two was 8.5×106 and lick three was 9.2×106), while the lowest load of bacteria was in samples which were collected from Kafori (lick one was 1.2×106, lick two was 2.3×106 and lick three was 3.4×106).
Table 3: | Types of bacteria isolated from milk mixed with saliva of dogs at Tuti Island |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
1 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
2 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
3 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
4 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
5 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
6 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
7 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
8 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
9 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
10 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
11 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
12 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
13 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
14 | G+ve Rods | +ve | -ve | +ve | Motile | Bacillus |
15 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
16 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
17 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
18 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
19 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
20 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
VP: Voges Proskauer |
Table 4: | Types of bacteria isolated from milk mixed with saliva of dogs at Gandahar |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
21 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
22 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
23 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
24 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
25 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
26 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
27 | G+ve Rods | +ve | -ve | +ve | Motile | Bacillus |
28 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
29 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
30 | G+ve Rods | +ve | -ve | +ve | Motile | Bacillus |
31 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
32 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
33 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
34 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
35 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
36 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
37 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
38 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
39 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
40 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
41 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
42 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
43 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
44 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
45 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
46 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
47 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
48 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
49 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
50 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
51 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
52 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
53 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
54 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
55 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
56 | G+ve cocci | -ve | -ve | -ve | Non motile | Gemella morbillorum |
57 | G+ve cocci | -ve | -ve | -ve | Non motile | Gemella morbillorum |
58 | G+ve cocci | +ve | +ve | -ve | Non motile | Micrococcus |
59 | G+ve cocci | -ve | -ve | -ve | Non motile | Gemella morbillorum |
60 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
Table 5: | Types of bacteria isolated from milk mixed with saliva of dogs at Elthawrah |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
61 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
62 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
63 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
64 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
65 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
66 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
67 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
68 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
69 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
70 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
71 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
72 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
73 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
74 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
75 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
76 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
77 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
78 | G+ve cocci | +ve | -ve | -ve | Non motile | Streptococcus |
79 | G+ve cocci | +ve | -ve | -ve | Non motile | Streptococcus |
80 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
81 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
Table 6: | Types of bacteria isolated from milk mixed with saliva of dogs at Elsalha |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
82 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
83 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
84 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
85 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
87 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
88 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
89 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
90 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
91 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
92 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
93 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
94 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
95 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
96 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
97 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
98 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
99 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
100 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
101 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
102 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
103 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
104 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
105 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
106 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
107 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
108 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
109 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
110 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
111 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
112 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
113 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
114 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
115 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
116 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
Table 7: | Types of bacteria isolated from milk mixed with saliva of dogs at Kafori |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
117 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
118 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
119 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
120 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
121 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
122 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
123 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
124 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
125 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
126 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
127 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
128 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
129 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
130 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
131 | G+ve Rods | +ve | -ve | -ve | Motile | Bacillus |
Table 8: | Types of bacteria isolated from milk mixed with saliva of dogs at Elshuhada |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
132 | G+ve cocci | +ve | +ve | +ve | Non motile | Micrococcus |
133 | G+ve cocci | +ve | +ve | +ve | Non motile | Micrococcus |
134 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
135 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
136 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
137 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
138 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
139 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
140 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
141 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
142 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
143 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
144 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
145 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
146 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
147 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
148 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
149 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
150 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
Table 9: | Types of bacteria isolated from saliva of dogs at Bori |
No. | Gram stain | Catalase | Coagulase | VP test | Motility | Species |
1 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
2 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
3 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
4 | G+ve cocci | +ve | +ve | +ve | Non motile | Micrococcus |
5 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
6 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
7 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
8 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
9 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
10 | G+ve cocci | +ve | +ve | +ve | Non motile | Micrococcus |
11 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
12 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
13 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
14 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
15 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
16 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
17 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
18 | G+ve Rods | +ve | +ve | -ve | Motile | Bacilllus |
19 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
20 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
21 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
22 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
23 | G+ve Rods | +ve | +ve | +ve | Motile | Bacilllus |
24 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
25 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
26 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
27 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
28 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
29 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
30 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
31 | G+ve Rods | +ve | +ve | -ve | Motile | Bacilllus |
32 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
33 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
34 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
35 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
36 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
37 | G+ve cocci | +ve | +ve | -ve | Non motile | Micrococcus |
38 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
39 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
40 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
41 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
42 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
43 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
44 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
45 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
46 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
47 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
48 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
49 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
50 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
51 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
52 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
53 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
54 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
55 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
56 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
57 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
58 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
59 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
60 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
61 | G+ve cocci | +ve | -ve | +ve | Non motile | Micrococcus |
62 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
63 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
64 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
65 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
66 | G+ve cocci | +ve | -ve | -ve | Non motile | Micrococcus |
67 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
68 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
69 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
70 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
71 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
72 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
73 | G+ve Rods | +ve | +ve | +ve | Motile | Bacilllus |
74 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
75 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
76 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
77 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
78 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
79 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
80 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
81 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
82 | G+ve Rods | +ve | -ve | +ve | Motile | Bacilllus |
83 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
84 | G+ve Rods | +ve | -ve | -ve | Motile | Bacilllus |
85 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
86 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
87 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
88 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
89 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
90 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
91 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
92 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
93 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
94 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
95 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
96 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
97 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
98 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
99 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
100 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
101 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
102 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
103 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
104 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
105 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
106 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
107 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
108 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
109 | G+ve cocci | -ve | -ve | -ve | Non motile | Streptococcus |
110 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
111 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
112 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
113 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
114 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
115 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
116 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
117 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
118 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
119 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
120 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
121 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
122 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
123 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
124 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
125 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
126 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
127 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
128 | G+ve cocci | -ve | +ve | -ve | Non motile | Streptococcus |
129 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
130 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
131 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
132 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
133 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
134 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
135 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
136 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
137 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
138 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
139 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
140 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
141 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
142 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
143 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
144 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
145 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
146 | G+ve Rods | +ve | -ve | +ve | Motille | Bacilllus |
147 | G+ve Rods | +ve | -ve | +ve | Motille | Bacilllus |
148 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
149 | G+ve cocci | +ve | +ve | -ve | Non motile | Staphylococcus |
150 | G+ve cocci | +ve | +ve | +ve | Non motile | Staphylococcus |
Table 10: | Percentage of bacterial species isolated from milk mixed with saliva from different samples |
Bacterial species | Tuti Island (20) | Bori (150) | Gandahar (40) | EL-Shuhada (19) | EL-Thawrah (21) | EL-Salha (34) | Kafori (15) |
Staphylococcus intermedius | 1 (5%) | 18 (12%) | 4 (10%) | 1 (5.26%) | 5 (23.81%) | 5 (14.71%) | 2 (17.33%) |
Staphylococcus aureus | 5 (25%) | 47 (31.33%) | 11 (27.5%) | 5 (26.32%) | 9 (42.86%) | 14 (41.18%) | 7 (46.67%) |
Staphylococcus epidermidis | 1 (5%) | 11 (7.33%) | 3 (7.5%) | 2 (10.53%) | 0 | 3 (8.82%) | 0 |
Staphylococcus sciuri | 1 (5%) | 5 (3.33%) | 3 (7.5%) | 4 (21.05%) | 2 (9.52%) | 3 (8.82%) | 0 |
Staphylococcus caseolyticus | 0 | 7 (4.67%) | 3 (7.5%) | 2 (10.53%) | 0 | 0 | 00 |
Streptococcus pneumoniae | 3 (15%) | 10 (6.67%) | 2 (5%) | 1 (5.26%) | 1 (4.76%) | 1 (2.94%) | 1 (6.67%) |
Streptococcus pyogenes | 0 | 7 (4.67%) | 2 (5%) | 2 (10.53%) | 2 (9.52%) | 1 (2.94%) | 00 |
Streptococcus sanguis | 0 | 5 (3.33%) | 2 (10%) | 0 | 0 | 0 | |
Bacillus badius | 2 (10%) | 9 (6%) | 1 (2.5%) | 0 | 0 | 2 (5.88%) | 3 (20%) |
Bacillus subtilis | 2 (10%) | 9 (6%) | 0 | 0 | 0 | 0 | 0 |
Bacillus lentus | 2 (10%) | 7 (4.67%) | 5 (12.5%) | 0 | 0 | 1 (2.94%) | 1 (6.67%) |
Micrococcus agilis | 2 (10%) | 1 (0.67%) | 1 (2.5%) | 1 (5.26%) | 1 (4.76%) | 0 | 0 |
Micrococcus kristinae | 1 (5%) | 2 (1.33%) | 3 (7.5%) | 0 | 1 (4.76%) | 0 | 1 (6.67%) |
M. mucilaginosus | 0 | 4 (2.67%) | 0 | 0 | 0 | 1 (2.94%) | 0 |
Micrococcus lylae | 0 | 1 (0.67%) | 0 | 1 (5.26%) | 0 | 3 (8.82%) | 0 |
Gemella morbillorum | 0 | 7 (4.67%) | 3 (7.5%) | 0 | 0 | 0 | 0 |
Novobiocin, Basitracin and Optochin were used to differentiate between some bacteria shown in Table 12, VP test and the position of spore was used to differentiate between Bacillus spp. as shown in Table 13. In species of M. kristinae the pigmentation of colonies was yellow colour, M. mucilaginosus had no pigmentation in colonies, M. agilis appeared red colour, while M. lylae showed cream colour in the surface of colonies, presented in Table 14.
Various bacterial species were tested against various antibiotics as shown in Table 15 Co-Trimexothazol showed the best antibiotic against different species of bacteria as 245 isolates were sensitive (81.7%) from the total isolates. Ciprofloxacin followed Co-Trimexothazol in a percentage of sensitivity, 220 isolates were sensitive to Ciprofloxacin (73.3%) from the total isolates. While Cloxacillin showed the lowest percentage against different bacteria as 14 isolates were sensitive (4.7%) from the total isolates.
Table 11: | Number of the CFU/mL from milk after licking for three times |
Sample No. | Lick one (CFU/mL) | Lick two (CFU/mL) | Lick three (CFU/mL) |
Tuti Island | |||
1 | 3.6×106 | 5.0×106 | 6.0×106 |
2 | 3.5×106 | 6.0×106 | 7.5×106 |
3 | 4.0×106 | 5.8×106 | 7.0×106 |
4 | 4.9×106 | 7.3×106 | 8.0×106 |
5 | 6.0×106 | 8.0×106 | 8.7×106 |
6 | 4.0×106 | 6.0×106 | 7.5×106 |
7 | 2.5×106 | 3.8×106 | 5.0×106 |
8 | 1.5×106 | 2.9×106 | 3.7×106 |
9 | 1.4×106 | 2.1×106 | 3.0×106 |
10 | 2.2×106 | 3.1×106 | 4.4×106 |
11 | 1.8×106 | 2.5×106 | 3.4×106 |
12 | 2.6×106 | 3.2×106 | 4.8×106 |
13 | 3.8×106 | 5.6×106 | 6.4x106 |
14 | 2.6×106 | 3.2×106 | 4.0×106 |
15 | 2.9×106 | 3.7×106 | 4.6×106 |
16 | 3.8×106 | 5.1×106 | 6.0×106 |
17 | 1.7×106 | 3.0×106 | 4.5×106 |
18 | 4.9×106 | 6.4×106 | 7.2×106 |
19 | 1.6×106 | 2.5×106 | 3.5×106 |
20 | 2.2×106 | 3.7×106 | 4.0×106 |
Gandahar | |||
21 | 3.2×106 | 5.0×106 | 6.3×106 |
22 | 5.5×106 | 7.3×106 | 8.0×106 |
23 | 2.4×106 | 4.0×106 | 5.9×106 |
24 | 3.3×106 | 5.9×106 | 7.2×106 |
25 | 4.0×106 | 5.3×106 | 6.0×106 |
26 | 7.0×106 | 8.5×106 | 9.2×106 |
27 | 3.3×106 | 4.0×106 | 5.5×106 |
28 | 2.3×106 | 3.9×106 | 5.6×106 |
29 | 3.8×106 | 5.0×106 | 7.5×106 |
30 | 1.5×106 | 3.0×106 | 4.9×106 |
31 | 2.4×106 | 3.7×106 | 4.5×106 |
32 | 1.9×106 | 2.7×106 | 5.7×106 |
33 | 2.6×106 | 4.0×106 | 6.2×106 |
34 | 2.0×106 | 3.1×106 | 4.9×106 |
35 | 1.7×106 | 3.0×106 | 4.3×106 |
36 | 3.7×106 | 6.8×106 | 9.0×106 |
37 | 3.8×106 | 5.0×106 | 6.7×106 |
38 | 2.1×106 | 3.2×106 | 5.0×106 |
39 | 4.0×106 | 5.6×106 | 7.2×106 |
40 | 3.1×106 | 4.4×106 | 6.4×106 |
41 | 2.9×106 | 3.9×106 | 5.0×106 |
42 | 3.3×106 | 4.7×106 | 6.0×106 |
43 | 2.9×106 | 3.8×106 | 5.0×106 |
44 | 3.6×106 | 5.6×106 | 7.4×106 |
45 | 2.0×106 | 3.3×106 | 4.0×106 |
46 | 1.4×106 | 2.3×106 | 3.6×106 |
47 | 1.3×106 | 2.5×106 | 4.1×106 |
48 | 2.0×106 | 2.9×106 | 4.0×106 |
49 | 2.9×106 | 4.8×106 | 7.0×106 |
50 | 2.6×106 | 3.5×106 | 4.8×106 |
51 | 2.4×106 | 3.5×106 | 6.0×106 |
52 | 1.5×106 | 2.2×106 | 4.0×106 |
53 | 3.7×106 | 5.2×106 | 7.0×106 |
54 | 3.8×106 | 5.0×106 | 6.0×106 |
55 | 4.0×106 | 5.5×106 | 6.0×106 |
56 | 1.9×106 | 2.3×106 | 3.3×106 |
57 | 2.9×106 | 4.0×106 | 5.5×106 |
58 | 2.3×106 | 3.0×106 | 4.1×106 |
59 | 2.0×106 | 2.9×106 | 3.4×106 |
60 | 2.9×106 | 4.0×106 | 6.0×106 |
ELthawrah | |||
61 | 3.5×106 | 4.2×106 | 6.6×106 |
62 | 5.0×106 | 6.3×106 | 7.5×106 |
63 | 1.7×106 | 2.5×106 | 4.0×106 |
64 | 3.0×106 | 4.5×106 | 6.0×106 |
65 | 2.1×106 | 3.0×106 | 5.4×106 |
66 | 3.7×106 | 4.9×106 | 6.0×106 |
67 | 1.5×106 | 2.3×106 | 3.8×106 |
68 | 3.1×106 | 4.0×106 | 5.2×106 |
69 | 2.7×106 | 3.3×106 | 4.5×106 |
70 | 2.2×106 | 3.9×106 | 5.0×106 |
71 | 4.0×106 | 5.3×106 | 6.9×106 |
72 | 1.4×106 | 2.5×106 | 3.7×106 |
73 | 3.1×106 | 4.8×106 | 5.9×106 |
74 | 1.5×106 | 2.9×106 | 3.5×106 |
75 | 3.7×106 | 4.5×106 | 6.0×106 |
76 | 2.8×106 | 4.9×106 | 6.8×106 |
77 | 2.7×106 | 5.5×106 | 7.0×106 |
78 | 2.4×106 | 3.6×106 | 5.0×106 |
79 | 1.3×106 | 2.1×106 | 3.0×106 |
80 | 3.0×106 | 4.5×106 | 5.7×106 |
81 | 3.7×106 | 4.9×106 | 6.0×106 |
ELsalha | |||
82 | 4.0×106 | 5.5×106 | 7.0×106 |
83 | 1.9×106 | 2.8×106 | 4.1×106 |
84 | 3.5×106 | 4.3×106 | 6.0×106 |
85 | 1.2×106 | 2.2×106 | 3.2×106 |
86 | 3.6×106 | 5.6×106 | 6.7×106 |
87 | 2.9×106 | 3.5×106 | 4.2×106 |
88 | 1.3×106 | 2.1×106 | 3.2×106 |
89 | 3.8×106 | 5.3×106 | 6.3×106 |
90 | 1.4×106 | 2.8×106 | 4.0×106 |
91 | 3.9×106 | 5.1×106 | 6.0×106 |
92 | 4.9×106 | 5.6×106 | 7.0×106 |
93 | 1.6×106 | 2.3×106 | 4.7×106 |
94 | 4.7×106 | 6.2×106 | 7.3×106 |
95 | 5.0×106 | 6.6×106 | 7.5×106 |
96 | 1.5×106 | 2.5×106 | 3.8×106 |
97 | 2.1×106 | 3.0×106 | 4.2×106 |
98 | 1.8×106 | 2.7×106 | 3.9×106 |
99 | 2.5×106 | 3.6×106 | 5.0×106 |
100 | 3.4×106 | 4.5x106 | 5.8×106 |
101 | 2.3×106 | 3.1×106 | 4.0×106 |
102 | 2.6×106 | 3.0×106 | 4.2×106 |
103 | 1.7×106 | 2.3×106 | 3.1×106 |
104 | 2.5×106 | 3.1×106 | 4.0×106 |
105 | 5.3×106 | 6.2×106 | 7.0×106 |
106 | 3.0×106 | 4.1×106 | 5.4×106 |
107 | 1.3×106 | 2.2×106 | 3.5×106 |
108 | 2.6×106 | 3.9×106 | 5.0×106 |
109 | 5.0×106 | 6.3×106 | 7.1×106 |
110 | 1.6×106 | 2.7×106 | 3.5×106 |
111 | 2.0×106 | 3.5×106 | 4.2×106 |
112 | 3.5×106 | 4.3×106 | 5.5×106 |
113 | 2.2×106 | 3.0×106 | 4.7×106 |
114 | 1.9×106 | 2.7×106 | 3.2×106 |
115 | 2.4×106 | 3.5×106 | 5.1×106 |
Kafori | |||
116 | 1.2×106 | 2.3×106 | 3.4×106 |
117 | 3.3×106 | 4.0×106 | 5.3×106 |
118 | 5.1×106 | 5.9×106 | 6.2×106 |
120 | 5.0×106 | 6.6×106 | 7.3×106 |
121 | 2.1×106 | 3.4×106 | 5.0×106 |
122 | 1.6×106 | 2.5×106 | 3.4×106 |
123 | 1.8×106 | 2.8×106 | 3.6×106 |
124 | 2.0×106 | 3.8×106 | 5.0×106 |
125 | 3.3×106 | 4.0×106 | 5.5×106 |
126 | 1.7×106 | 2.9×106 | 3.8×106 |
127 | 2.6×106 | 3.2×106 | 4.5×106 |
128 | 5.0×106 | 6.2×106 | 7.3×106 |
129 | 3.3×106 | 4.0×106 | 5.5×106 |
130 | 2.3×106 | 3.2×106 | 4.0×106 |
131 | 2.5×106 | 3.3×106 | 4.3×106 |
ELshuhada | |||
132 | 4.5×106 | 5.2×106 | 6.1×106 |
133 | 1.7×106 | 2.9×106 | 3.8×106 |
134 | 3.1×106 | 4.0×106 | 5.2×106 |
135 | 2.4×106 | 3.5×106 | 4.8×106 |
136 | 1.9×106 | 2.8×106 | 3.6×106 |
137 | 3.2×106 | 4.5×106 | 5.9×106 |
138 | 2.5×106 | 3.7×106 | 5.1×106 |
139 | 4.4×106 | 5.4×106 | 6.7×106 |
140 | 2.4×106 | 3.5×106 | 5.0×106 |
141 | 2.1×106 | 3.2×106 | 4.3×106 |
142 | 3.5×106 | 4.3×106 | 5.5×106 |
143 | 3.2×106 | 4.0×106 | 5.3×106 |
144 | 2.2×106 | 3.5×106 | 4.5×106 |
145 | 4.0×106 | 5.2×106 | 6.6×106 |
146 | 6.1×106 | 7.3×106 | 8.2×106 |
147 | 7.0×106 | 8.5×106 | 9.2×106 |
148 | 2.7×106 | 3.5×106 | 4.4×106 |
149 | 4.2×106 | 5.3×106 | 6.1×106 |
150 | 1.8×106 | 2.6×106 | 3.3×106 |
Table 12: | Some antibiotics used to differentiate some bacterial species and observe appearing of haemolysis |
Genus | Novobiocin | Basitracin | Optochin | Haemolysis |
Staphylococcus caseolyticus | S | - | - | - |
Staphylococcus sciuri | R | - | - | - |
Streptococcus pyogenes | - | S | R | Beta haemolysis |
Streptococcus pneumoniae | - | S | S | Alpha haemolysis |
S: Sensitive and R: Resistant |
Table 13: | VP test, position and shape of spore used to differentiate some species of Bacilli |
Genus | VP test | Position and shape of spore |
Bacillus badius | -ve | Central and oval |
Bacillus subtilis | +ve | Central and oval |
Bacillus lentus | -ve | Terminal and oval |
Table 14: | Genus of Micrococcus spp showed different pigmentation on the surface of colonies |
Genus | Pigmentation of colonies |
M. kristinnae | Yellow |
M. mucilaginosus | - |
Megachile agilis | Red |
Micrococcus lylae | Cream |
Table 15: | Sensitivity percentage of antibiotic disk against various bacterial species |
Antimicrobial agent | Resistant | Intermediate | Sensitive |
Ampicillin (10 μg) | 80 (26.6%) | 20 (6.7%) | 200 (66.7%) |
Co-Trimexothazol (25 μg) | 34 (11.3%) | 21 (7.0%) | 245 (81.7%) |
Cephalexin (30 μg) | 55 (18.3%) | 37 (12.3%) | 208 (69.3%) |
Tetracycline (30 μg) | 55 (18.3%) | 53 (17.7%) | 192 (64%) |
Cefotaxime ( (30 μg) | 38 (12.7%) | 95 (31.7%) | 167 (55.7%) |
Ciprofloxacin (5 μg) | 22 (7.3%) | 58 (19.3%) | 220 (73.3%) |
Levofloxacin (5 μg) | 38 (12.7%) | 45 (15%) | 217 (72.3%) |
Gentamycin (10 μg) | 62 (20.7%) | 42 (14%) | 196 (65.3%) |
Lincomycin (2 μg) | 89 (29.7%) | 78 (26%) | 133 (44.3%) |
Linezoled (30 μg) | 114 (38%) | 7 (2.3%) | 179 (59.7%) |
Roxithromycin (15 μg) | 76 (25.3%) | 105 (35%) | 119 (39.7%) |
Cloxacillin (5 μg) | 281 (93.7%) | 5 (1.7%) | 14 (4.7%) |
DISCUSSION
This study’s findings aligned with previous literature that highlights the presence of Gram-positive bacteria, particularly Staphylococcus aureus, in canine oral flora. Similar studies have identified S. aureus as a significant bacterium in dog saliva, emphasizing its potential as a source of contamination in various environments, including food sources16. The identification of Co-Trimoxazole and Ciprofloxacin as effective treatments for these bacterial isolates also resonates with existing research, which suggests that these antibiotics are generally effective against Gram-positive bacteria, including S. aureus17.
The results obtained in this study reveal that a significant amount of bacteria, more than 1×105 CFU/mL, are introduced into sterile milk licked by a dog three times. Furthermore, the types of bacteria introduced can be harmful to human health. This study evaluated all isolated bacterial genera against different antibiotics. Staphylococcus spp. and Streptococcus spp. were isolated from dog saliva, aligned with findings by Georges and Adesiyun18, who recorded that dog bites to children between the ages of 8-12 in Trinidad presented risk factors and preventive strategies for reducing injuries. Most studies on dog injuries derive from hospital data, primarily from emergency departments, with the most common injury sites being the face, head and neck, especially in children under five years old. Bacteria such as Staphylococcus spp. Streptococcus spp. and Pasteurella multocida were isolated from dog bite wounds.
This study isolated S. aureus from dog saliva, similar to findings by Robertson et al.19, who reported dogs as main reservoirs of many infective stages of parasites transmissible to humans and other domestic animals. There is evidence of resistant organism transfer between animals and people, highlighting dogs' public health significance due to their close companionship with humans. In the United States, up to 43 million (36.5%) households own a dog. Saliva, a biological fluid, offers advantages as a diagnostic medium over blood due to non-invasive, simple collection and repeated sampling without discomfort to the patient. In human medicine, saliva is gaining attention as an alternative to blood analysis. In dogs, analytes like C-reactive protein, cortisol, alpha-amylase, adenosine deaminase or muscle enzymes have been measured in saliva20.
This study detected various bacterial species among dogs kept as pets in Khartoum State. Samples were collected from milk mixed with dog saliva from Tuti Island, Elshuhada, Elthawrah, Kafori, Gandahar and Elsalha and direct saliva samples using sterile cotton swabs from Bori (police dogs). All isolated bacteria were Gram-positive, with some capable of causing numerous human diseases. The genus Staphylococcus exhibited the highest percentage, with 181 isolates (60.33%) of the total isolation. This genus displayed different shapes, colors and sizes. Five Staphylococcus species were fully identified: Staphylococcus aureus, Staphylococcus intermedius, Staphylococcus sciuri, Staphylococcus epidermidis and Staphylococcus caseolyticus. Staphylococcus intermedius was isolated from 18 samples of licked milk. Known to be carried in dog saliva, Staphylococcus intermedius poses a serious health hazard for dog owners and those consuming contaminated food. This finding aligned with Kempker et al.21, who isolated Staphylococcus intermedius from a woman with a history of endoscopic pituitary edema resection presenting with foul-smelling nasal discharge. Staphylococcus intermedius is a potential human pathogen.
The results of this study, which isolated Staphylococcus intermedius from dog saliva, were substantiated by Kikuchi et al.22, who reported a case of a 37 year-old female with Staphylococcus intermedius in a surgical wound infection. A month later, a case of mastoid cavity infection due to ear licking by a dog was reported. These cases emphasize the danger of consuming food contaminated by dog saliva carrying Staphylococcus intermedius. The association of human infection with Staphylococcus intermedius may be attributed to its status as normal dog skin flora23. Dog and cat bites are primary sources of bacterial diseases, some fatal24. Maurelli et al.25 demonstrated that bodily contact significantly contributes to infection occurrence.
The genus Micrococcus showed 24 isolates (8%) from the total number, with a high percentage isolated from Bori. This study isolated Micrococcus spp. from dog saliva, substantiated by Abrahamian and Goldstein26, who isolated Micrococcus spp., from dog bites. The genus Streptococcus showed 40 isolates (13.33%) from the total number, with a high percentage isolated from Bori. In this study, Streptococcus pneumoniae, Streptococcus sanguis and Streptococcus pyogenes isolation aligned with Fredrick et al.26.
Three Bacillus species were isolated in this study: Bacillus lentus, B. badius and B. subtilis, comprising 43 isolates (14.33%) of the total. This genus showed different shapes, colors and sizes, with some having mucoid colonies. The study found M. mucilaginosus sensitivity to various antibiotics, similar to von Eiff et al.27, who found M. mucilaginosus sensitivity in 63 isolates. Leyden et al.28 counted aerobic bacteria colonies from dogs’ moist areas, such as the axillae or toe web spaces, reaching 107 bacteria per cm2, while dry areas like the forearm or trunk harbored fewer bacteria per cm2, substantiating28. Anaerobic bacteria are present on human skin, with colony counts up to 106 bacteria per cm2 29. Ribeiro et al.30 reported that Strep pyogenes has significant importance as an opportunistic animal pathogen causing a variety of purulent infections. These infections pose a huge economic problem in livestock breeding, it is considred to be a part of the biota of skin and mucous membrane of the upper respiratory and urogenital tracts of animals.
According to Moosavy et al.31, most animal bites to humans in the Saudi Arabia involve snakes, dogs, cats, rodents and foxes. Their study also identified Actinobacteria in dog saliva, mirroring the findings of Wilhem et al.32, who detected Actinobacteria in the oral cavities of dogs. Additionally, Harvey33 documented the isolation of Gram-positive bacteria from the mouths of dogs in various studies, highlighting that the prevalence of periodontal disease increases with age, affecting around 80% of dogs. The most common treatment for periodontal disease in dogs is scaling, which usually requires general anesthesia.
The study revealed a significant bacterial load, exceeding 1×105 CFU/mL, in the milk mixed with dog saliva. The isolated bacteria included Staphylococcus aureus, Staphylococcus intermedius and various Streptococcus species, which are known to cause infections in humans. The antimicrobial susceptibility testing showed that many of the isolated bacteria were resistant to multiple antibiotics.
CONCLUSION
The study concludes that saliva, particularly from dogs, contains pathogenic bacteria like S. aureus, making it a significant source of infection. The bacterial count in milk increased with repeated licking, highlighting the risk of pathogen transmission through saliva in food and drinks. Co-trimoxazole emerged as the most effective antibiotic against these bacteria, followed by Ciprofloxacin, while Fungistatin was recommended for preventing fungal contamination. Future recommendations include more extensive surveillance of antibiotic-resistant bacteria, public education on the risks of dog saliva and the implementation of preventive hygiene measures to reduce bacterial transmission.
SIGNIFICANCE STATEMENT
This study underscores the importance of understanding the microbial composition of dog saliva and its implications for public health. The isolation and characterization of bacteria from milk mixed with dog saliva reveal significant bacterial contamination and antimicrobial resistance, posing potential health risks. Continuous research and public health initiatives are crucial to address these concerns and safeguard human health.
REFERENCES
- Tóth, A.G., I. Tóth, B. Rózsa, A. Dubecz and Á.V. Patai et al., 2022. Canine saliva as a possible source of antimicrobial resistance genes. Antibiotics, 11.
- Veir, J.K. and M.R. Lappin, 2010. Molecular diagnostic assays for infectious diseases in cats. Vet. Clin. North Am. Small Anim. Pract., 40: 1189-1200.
- Johler, S., D. Weder, C. Bridy, M.C. Huguenin, L. Robert, J. Hummerjohann and R. Stephan, 2015. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J. Dairy Sci., 98: 2944-2948.
- Grudlewska-Buda, K., J. Bauza-Kaszewska, N. Wiktorczyk-Kapischke, A. Budzyńska, E. Gospodarek-Komkowska and K. Skowron, 2023. Antibiotic resistance in selected emerging bacterial foodborne pathogens-An issue of concern? Antibiotics, 12.
- Cuny, C., A. Friedrich, S. Kozytska, F. Layer and U. Nübel et al., 2010. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol., 300: 109-117.
- Rammell, C.G., 1962. Inhibition by citrate of the growth of coagulase-positive staphylococci. J. Bacteriol., 84: 1123-1124.
- Feltham, R.K.A. and G.I. Barrow, 2003. Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd Edn., Cambridge University Press, Cambridge, England, ISBN: 9780521543286, Pages: 331.
- Tittsler, R.P. and L.A. Sandholzer, 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol., 31: 575-580.
- Koch, A.L., 2004. Growth Measurement. In: Methods for General and Molecular Microbiology, Reddy, C.A., T.J. Beveridge, J.A. Breznak, G.A. Marzluf, T.M. Schmidt and L.R. Snyder (Eds.), ASM Press, Washington, DC, United States, ISBN: 9781683671619, pp: 172-199.
- Clark, W.M. and H.A. Lubs, 1915. The differentiation of bacteria of the Colonaerogenes family by the use of indicators. J. Infect. Dis., 17: 160-173.
- Dickson, J.I. and R.R. Marples, 1986. Coagulase production by strains of Staphylococcus aureus of differing resistance characters: A comparison of two traditional methods with a latex agglutination system detecting both clumping factor and protein A. J. Clin. Pathol., 39: 371-375.
- Grov, A., B. Myklestad and P. Oeding, 1964. Immunochemical studies on antigen preparations from Staphylococcus aureus: 1. Isolation and chemical characterization of antigen A. Acta Pathologica Microbiol. Scand., 61: 588-596.
- Preston, N.W. and A. Morrell, 1962. Reproducible results with the gram stain. J. Pathol. Bacteriol., 84: 241-243.
- Murray, P.R., K. Rosenthal and M.A. Pfaller, 2020. Medical Microbiology E-Book. 9th Edn., Elsevier Health Sciences, Amsterdam, Netherlands, ISBN: 9780323674508, Pages: 872.
- Balouiri, M., M. Sadiki and S.K. Ibnsouda, 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6: 71-79.
- Rubin, J.E., K.R. Ball and M. Chirino-Trejo, 2011. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from various animals. Can. Vet. J., 52: 153-157.
- Moellering Jr., R.C., 1998. Antibiotic resistance: Lessons for the future. Clin. Infect. Dis., 27: S135-S140.
- Georges, K. and A. Adesiyun, 2008. An investigation into the prevalence of dog bites to primary school children in Trinidad. BMC Public Health, 8.
- Robertson, I.D., P.J. Irwin, A.J. Lymbery and R.C.A. Thompson, 2000. The role of companion animals in the emergence of parasitic zoonoses. Int. J. Parasitol., 30: 1369-1377.
- Pfaffe, T., J. Cooper-White, P. Beyerlein, K. Kostner and C. Punyadeera, 2011. Diagnostic potential of saliva: Current state and future applications. Clin. Chem., 57: 675-687.
- Kempker, R., M. Eaton, D. Mangalat and T. Kongphet-Tran, 2009. Beware of the pet dog: A case of Staphylococcus intermedius infection. Am. J. Med. Sci., 338: 425-427.
- Kikuchi, K., C. Piao, I. Itoda, H. Hidai and H. Yamaura et al., 2004. Molecular confirmation of transmission route of Staphylococcus intermedius in mastoid cavity infection from dog saliva. J. Infect. Chemother., 10: 46-48.
- Wang, N., A.M. Neilan and M. Klompas, 2013. Staphylococcus intermedius infections: Case report and literature review. Infect. Dis. Rep., 5.
- Orton, D.W. and W.H. Fulcher, 1984. Pasteurella multocida: Bilateral septic knee joint prostheses from a distant cat bite. Ann. Emerg. Med., 13: 1065-1067.
- Maurelli, M.P., A. Santaniello, A. Fioretti, G. Cringoli, L. Rinaldi and L.F. Menna, 2019. The presence of Toxocara eggs on dog’s fur as potential zoonotic risk in animal-assisted interventions: A systematic review. Animals, 9.
- Abrahamian, F.M. and E.J.C. Goldstein, 2011. Microbiology of animal bite wound infections. Clin. Microbiol. Rev., 24: 231-246.
- von Eiff, C., M. Herrmann and G. Peters, 1995. Antimicrobial susceptibilities of Stomatococcus mucilaginosus and of Micrococcus spp. Antimicrob. Agents Chemother., 39: 268-270.
- Leydcn, J.J., K.J. McGinley, K.M. Nordstrom and G.F. Webster, 1987. Skin microflora. J. Invest. Dermatol., 88: 65-72.
- Fredricks, D.N., 2001. Microbial ecology of human skin in health and disease. J. Invest. Dermatol. Symp. Proc., 6: 167-169.
- Ribeiro, M.G., R.M. Risseti, C.A.D. Bolaños, K.A. Caffaro and A.C.B. de Morais et al., 2015. Trueperella pyogenes multispecies infections in domestic animals: A retrospective study of 144 cases (2002 to 2012). Vet. Q., 35: 82-87.
- Moosavy, S.H., M. Shahi, J. Rafinejad, S. Zare, A. Madani and S. Navidpour, 2016. Epidemiological aspect of scorpion sting in Bandar Abbas, Iran, during 2009-2011. Electron. Physician, 8: 2286-2290.
- Wilhem, S., M. Kovalik and C. Favrot, 2011. Breed-associated phenotypes in canine atopic dermatitis. Vet. Dermatol., 22: 143-149.
- Harvey, C.E., 2005. Management of periodontal disease: Understanding the options. Vet. Clin. North Am.: Small Anim. Pract., 35: 819-836.
How to Cite this paper?
APA-7 Style
Mohammed Tahir,
A.I., El Sanousi ,
S.M., EL-Kamali ,
H.H. (2024). Antibacterial Resistance and Bacterial Load in Milk Exposed to Dog Saliva in Sudan. Asian Journal of Biological Sciences, 17(4), 867-882. https://doi.org/10.3923/ajbs.2024.867.882
ACS Style
Mohammed Tahir,
A.I.; El Sanousi ,
S.M.; EL-Kamali ,
H.H. Antibacterial Resistance and Bacterial Load in Milk Exposed to Dog Saliva in Sudan. Asian J. Biol. Sci 2024, 17, 867-882. https://doi.org/10.3923/ajbs.2024.867.882
AMA Style
Mohammed Tahir
AI, El Sanousi
SM, EL-Kamali
HH. Antibacterial Resistance and Bacterial Load in Milk Exposed to Dog Saliva in Sudan. Asian Journal of Biological Sciences. 2024; 17(4): 867-882. https://doi.org/10.3923/ajbs.2024.867.882
Chicago/Turabian Style
Mohammed Tahir, Asmaa, Ibrahim, Sulieman Mohammed El Sanousi , and Hatil Hashim Ahmed EL-Kamali .
2024. "Antibacterial Resistance and Bacterial Load in Milk Exposed to Dog Saliva in Sudan" Asian Journal of Biological Sciences 17, no. 4: 867-882. https://doi.org/10.3923/ajbs.2024.867.882
This work is licensed under a Creative Commons Attribution 4.0 International License.